

Industrial Energy Strategy & the Role of Audits

Presented by

Charles Rampey, PE

September 13, 2010

Discussion Points

Energy Strategy

Role of Audits

Case Studies

Energy Strategy?

- Successful companies develop and *implement* a business strategy which includes a marketing strategy, a financial strategy, an operating plan, a maintenance strategy, etc.,etc,etc.....but few have an energy strategy!
- One of the most proactive steps that a manufacturer can take to control energy costs now & in the future is to develop an Energy Strategy

OK So what is a Strategy?

The simplest definition is

A plan of action designed to achieve a specific goal

- An Energy Strategy addresses many things including
 - Supply
 - Utilization
 - Cost
 - Alternatives
 - Contract Issues
 - Response to change
 - Risk

Steps in an Energy Strategy

STEP 1: Make Commitment

STEP 2: Assess Performance (Audit)

STEP 3: Set Goals

STEP 4: Create Action Plan

STEP 5: Implement Action Plan

STEP 6: Evaluate Progress

STEP 7: Recognize Achievements

Role of Audit

- Methodical examination & review
- Identify what, where & how much
- Compare the "as found" condition
 - To a "new & clean" condition
 - To new/replacement technology and/or procedures
- Use results to prioritize maintenance, refine operations or evaluate something different

Audit process

- Review bills
- Create graphs
- Develop understanding of where energy is used, how it is priced & what are cost trends
- Interview operations & maintenance personnel
- Develop equipment lists & operating parameters
- Create an energy balance

Billing Components

Demand Graph

Energy Graph

Cost Graph

Energy balance

Electric Energy Consumption by Area/Process

Case Study - Compressed Air

- Annual electric expenditure \$900K
- Estimated compressed air cost \$270
- 2 @ 300 Hp (base loaded), 3 @ 200 HP (standby)
- Conducted leak survey & repaired grade 1 leaks
- Reworked piping to eliminate bottlenecks
- Reduced discharge pressure from 110 PSIG to 100 PSIG
- Relocated one compressor, dryer & receiver closer to demand
- Eliminated several inappropriate uses
- Now operate with two 200 Hp compressors
- Estimated annual savings \$90,000

Case Study - Lighting

- Annual electric expenditure \$1.7 Million
- Estimated lighting cost \$400K
- Conducted lighting survey
- Phase 1: Replaced 323 metal halide fixtures with new fluorescent fixtures using T8 lamps, electronic ballasts & occupancy sensors in some locations
- Project cost \$74,800
- Estimated annual savings \$82,400
- Payback 11 months (7 months w/EPAct credit)

Case Study – Steam

- Plant in central SC
- Annual gas cost \$1.0 Million
- 81% was for boiler fuel
- Replaced insulation on steam piping & dearator, implemented trap maintenance program, used waste heat to preheat combustion air, used boiler blowdown to preheat boiler feedwater makeup
- Estimated annual savings \$150,000

Solutions to improve your bottom line

Questions!

